Journal of Organometallic Chemistry, 159 (1978) 201-217 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

ZUR KENNTNIS DER CHEMIE DER METALLCARBONYLE UND DER CYANOKOMPLEXE IN FLÜSSIGEM AMMONIAK

XXXIII *. ÜBER DIE DARSTELLUNG NEUER CARBAMOYL—CARBONYL-KOMPLEXE AUS BEKANNTEN UND NEUEN KATIONISCHEN CARBONYLVERBINDUNGEN DES MANGANS UND RHENIUMS

HELMUT BEHRENS *, RALF-JÜRGEN LAMPE, PETER MERBACH und MATTHIAS MOLL

Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg (B.R.D.) (Eingegangen den 24. April 1978)

Summary

The covalent carbamoyl carbonyl compounds $\text{Re}(\text{CO})_5\text{CONH}_2$, cis-M(CO)₄-(L)CONH₂, M(CO)₃(L)₂CONH₂ and M(CO)₃(D)CONH₂ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen) are formed by reactions of the cationic complexes [Re-(CO)₆]⁺, [M(CO)₅L]⁺, [M(CO)₄L₂]⁺ and [M(CO)₄D]⁺ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen) with liquid NH₃ with concomitant deprotonation:

 $[M(CO)_{6-n}L_n]^+ + 2 \text{ NH}_3 \rightarrow M(CO)_{5-n}L_nCONH_2 + \text{NH}_4^+ (n = 0, 1, 2)$

and

 $[M(CO)_4D]^+ + 2 \text{ NH}_3 \rightarrow M(CO)_3(D)CONH_2 + \text{NH}_4^+$

The stability of the above-mentioned carbamoyl carbonyl complexes increases from the penta- to the tetra- to the tri-carbonyl derivatives. In all cases the rhenium compounds are much more stable than the corresponding manganese complexes. Whereas the carbamoyl compound $\text{Re}(\text{CO})_4(\text{PEt}_3)\text{CONH}_2$ can be isolated by reaction of $[\text{Re}(\text{CO})_5\text{PEt}_3]^+$ with NH₃, the corresponding manganese complex undergoes Hofmann degradation of amides even at -70° C to form HMn(CO)₄PEt₃ and NH₄NCO. The IR and some mass and ¹H NMR spectra of the new hexacoordinated carbamoyl carbonyl complexes are discussed and the reactions of these compounds with liquid NH₃, HCl and CH₃OH are described.

^{*} Für XXXII. Mitteilung siehe Ref. 23.

Zusammenfassung

Bei den Umsetzungen der Kationkomplexe $[Re(CO)_6]^+$, $[M(CO)_5L]^+$, $[M(CO)_4L_2]^+$ und $[M(CO)_4D]^+$ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen) mit flüssigem NH₃ bilden sich gemäss:

 $[M(CO)_{6-n}L_n]^+ + 2 \text{ NH}_3 \rightarrow M(CO)_{5-n}L_nCONH_2 + \text{NH}_4^+ (n = 0, 1, 2)$

und

 $[M(CO)_4D]^+ + 2 \text{ NH}_3 \rightarrow M(CO)_3(D)CONH_2 + NH_4^+$

unter Protonenabspaltung die entsprechenden kovalenten Carbamoyl-carbonyl-Verbindungen Re(CO)₅CONH₂, *cis*-M(CO)₄(L)CONH₂, M(CO)₃(L)₂CONH₂ und M(CO)₃(D)CONH₂. Die Beständigkeit der beschriebenen Carbamoyl-carbonyl-Komplexe nimmt von den Penta- über die Tetra- zu den Tricarbonylstufen deutlich zu, wobei sich allgemein die Rheniumverbindungen als wesentlich stabiler als die entsprechenden Manganderivate erweisen. Während nämlich bei der Reaktion von [Re(CO)₅PEt₃]⁺ mit NH₃ die Carbamoylverbindung Re(CO)₄-(PEt₃)CONH₂ noch isoliert werden kann, unterliegt der entsprechende Mangankomplex bereits bei -70° C dem Hofmannschen Säureamidabbau unter Bildung von HMn(CO)₄PEt₃ und NH₄NCO. Die neuen hexakoordinierten Carbamoylcarbonyl-Komplexe werden IR-spektroskopisch, teilweise auch massen- und ¹H-NMR-spektroskopisch untersucht. Schliesslich wird das Reaktionsverhalten der untersuchten Carbamoyl-carbonyl-Komplexe gegenüber flüssigem NH₃, HCl und CH₃OH beschrieben.

Einleitung

In den letzten Jahren haben wir sowohl Verbindungen des Typs $M(CO)_5X$ (M = Mn, Re; X = Cl, Br) [1,2] als auch zahlreiche kationische Carbonylkomplexe des Mn [2], des Co [3], des Fe [4] und des Mo [5] mit flüssigem NH₃ umgesetzt. Diese Reaktionen führen in Abhängigkeit von Temperatur und den jeweiligen Liganden entweder zu Carbamoyl-carbonyl- oder Hydrido-carbonyl-Komplexen der genannten Metalle. Sämtliche Umsetzungen stehen in grundsätzlicher Übereinstimmung mit den früher von uns beschriebenen Reaktionen von KNH₂ mit CO in flüssigem NH₃, bei denen je nach Reaktionsbedingungen HCONHK und HCONH₂ bzw. KNCO und H₂ gebildet werden [6]. In den folgenden Untersuchungen soll nun das Verhalten weiterer bekannter und neuer Kationischer Hexa-, Penta- und Tetracarbonyl-Komplexe des Mn und Re im Ammonosystem beschrieben werden.

I. Umsetzung von kationischen Carbonylkomplexen des Mangans und Rheniums

Für die jeweiligen Umsetzungen mit flüssigem NH_3 werden die folgenden kationischen Komplexe eingesetzt:

 $[Mn(CO)_6]Cl \cdot HCl$

trans- $[Mn(CO)_4(PPh_3)_2]PF_6$

[Re(CO) ₆]Cl · HCl	$trans-[Re(CO)_4(PPh_3)_2]PF_6$
[Mn(CO) ₅ PPh ₃]PF ₆	trans- $[Mn(CO)_4(PEt_3)_2]PF_6$
[Re(CO) ₅ PPh ₃]PF ₆	cis-[Re(CO) ₄ (PEt ₃) ₂]PF ₆
[Mn(CO)5PEt3]PF6	cis-[Mn(CO) ₄ bipy]PF ₆
[Re(CO) ₅ PEt ₃]PF ₆	<i>cis</i> -[Re(CO)₄bipy]PF ₆
	<i>cis</i> -[Mn(CO)₄phen]PF ₆

Während die IR-Daten von $[Mn(CO)_6]Cl \cdot HCl [7], [Re(CO)_6]Cl \cdot HCl [7], [Mn(CO)_5PPh_3]PF_6 [7], [Mn(CO)_4(PPh_3)_2]PF_6 [7], [Re(CO)_4(PPh_3)_2]PF_6 [8] und [Mn(CO)_4phen]PF_6 [8] bekannt sind, sind die übrigen Verbindungen in der Literatur noch nicht oder nur unvollständig charakterisiert. Die Strukturen dieser Komplexe ergeben sich aus den in Tab. 1 wiedergegebenen IR-Spektren im <math>\nu$ (CO)-Bereich.

1. Umsetzung kationischer Hexacarbonyl-Komplexe des Mangans und Rheniums mit flüssigem NH₃

Bereits 1967 untersuchten Behrens und Mitarbeiter [9] die Umsetzung des [Mn(CO)₆]⁺-Kations mit flüssigem NH₃ bei 20°C, die gemäss Gl. 1 zu HMn(CO)₅

$$[Mn(CO)_6]^+ + 3 \text{ NH}_3 \xrightarrow{20^\circ \text{C}} \text{HMn}(CO)_5 + CO(\text{NH}_2)_2 + \text{NH}_4^+$$
(1)

und Harnstoff führt. Dabei wurde schon damals die Bildung der Carbamoylpentacarbonyl-Verbindung $Mn(CO)_5CONH_2$ als Zwischenstufe postuliert. Da aufgrund früherer Untersuchungen [3,5] die Isolierung instabiler Carbamoylverbindungen nur bei tiefen Temperaturen zu erwarten ist, haben wir $[Mn(CO)_6]$ -Cl · HCl nun auch bei —80°C mit flüssigem NH₃ umgesetzt. Selbst unter diesen extremen Versuchsbedingungen ist es jedoch nicht möglich, $Mn(CO)_5CONH_2$ zu isolieren. Vielmehr wird auch hierbei gemäss Gl. 2 wieder HMn(CO)₅, anstelle

$$[\operatorname{Mn}(\operatorname{CO})_6]^+ + 3\operatorname{NH}_3 \xrightarrow[flüss. NH_3]{-80^\circ \text{C}} \operatorname{HMn}(\operatorname{CO})_5 + \operatorname{NH}_4 \operatorname{NCO} + \operatorname{NH}_4^+$$
(2)

von CO(NH₂)₂ jedoch NH₄NCO gebildet.

Es ist somit anzunehmen, dass die CONH₂-Gruppe in Analogie zum Hofmannschen Säureamidabbau zu NCO⁻ oxidiert wird.

Entsprechende Versuche mit dem $[\text{Re}(\text{CO})_6]^+$ -Kation zwischen 20 und 120°C führen, wie bei der Manganverbindung, ebenfalls zum Hydrido-carbonyl-Komplex unter gleichzeitiger Bildung von Harnstoff (Gl. 3).

$$[\operatorname{Re}(\operatorname{CO})_6]^+ + 3 \operatorname{NH}_3 \xrightarrow{120^\circ \mathrm{C}}_{\operatorname{flüss. NH}_3} \operatorname{HRe}(\operatorname{CO})_5 + \operatorname{CO}(\operatorname{NH}_2)_2 + \operatorname{NH}_4^+$$
(3)

Dagegen erhält man bei -80° C und einer Reaktionsdauer von höchstens 10 Minuten die farblose, äusserst instabile, in flüssigem NH₃ bei -80° C relativ schwer-

TΔ	BELL.	F	1
		_	

Verbindung	Lsg./CH ₂ Cl ₂	Lsg./Aceton	fest/KBr
[Mn(CO) ₅ PPh ₃]PF ₆	2142m 2090(Sch) 2050sst]		2150m 2090s(Sch) 2070sst 2042sst
[Re(CO) ₅ PPh ₃]PF ₆		2160m 2095s(Sch) 2050sst	2160st 2110m(Sch) 2090st(Sch) 2070sst 2050sst
[Mn(CO)5PEt3]PF6	2150m 2090(Sch) 2050sst		2145m 2090(Sch) 2060sst 2045(Sch)
[Re(CO)5PEt3]PF6		2155s 2090s(Sch) 2049sst	2158m 2090s(Sch) 2055sst 2030sst
[Mn(CO) ₄ (PEt ₃) ₂]PF ₆	2095ss 2048s 1995sst		2004Sch 1982sst 1960m
[Re(CO) ₄ (PEt ₃) ₂]PF ₆	2110s 2025m 2007st 1995(Sch)		2115s-m 2035st 1992st 1982Sch] 1968st
[Mn(CO)4bipy]PF ₆	2125s 2048st 2026m-st 1986m-st		2120m-st 2045st 2028st 1975st 1965m(Sch)]
[Re(CO)4bipy]PF ₆		2125s 2033sst 2010st 1970st	2122s-m 2099st(br) 1978st 1967m-st(Sch)

 ν (CO)-ABSORPTIONEN VON [M(CO)₅L]PF₆, [M(CO)₄L₂]PF₆ UND [M(CO)₄D]PF₆ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy) IM KURZWELLIGEN IR-BEREICH (cm⁻¹)

lösliche Carbamoyl-pentacarbonyl-Verbindung Re(CO)₅CONH₂ (Gl. 4) die sich

$$[\operatorname{Re}(\operatorname{CO})_6]^+ + 2 \operatorname{NH}_3 \xrightarrow[flüss. NH_3]{-80^\circ \text{C}} \operatorname{Re}(\operatorname{CO})_5 \operatorname{CONH}_2 + \operatorname{NH}_4^+$$
(4)

durch ihr Massen-, IR-, und ¹H-NMR-Spektrum eindeutig charakterisieren lässt.

Die entsprechende N-alkyl-substituierte, recht stabile Verbindung Re(CO)₅-CONCH₃ konnten Brink und Angelici [10] aus [Re(CO)₆]⁺ und NH₂CH₃ im Molverhältnis 1 : 1 analysenrein darstellen. Charakteristisch ist der grosse Stabilitätsunterschied zwischen den Komplexen mit der CONH₂- und der CONHCH₃-Gruppe, wie er auch bei anderen Übergangsmetallen beobachtet wird [3,5]. *Massenspektrum von* $Re(CO)_5CONH_2$. Das Massenspektrum von $Re(CO)_5^-$ CONH₂ ist, ausgehend vom Molekülion $Re(CO)_5CONH_2^+$, im wesentlichen durch drei Abbauprozesse gekennzeichnet (Schema 1). In Konkurrenz zur schrittweisen Eliminierung sämtlicher CO-Moleküle, die zum $ReNH_2^+$ führt, steht die primäre Abspaltung der NH₂-Gruppierung, wobei durch anschliessende Decarbonylierung die Ionen $Re(CO)_x^+$ (x = 6--0) enstehen. In einem dritten Fragmentierungsweg wird aus dem Molekülion HNCO abgespalten, was unter Berücksichtigung anschliessender CO-Eliminierungen zu den Ionen $Re(CO)_xH^+$ (x = 5-0) führt. Die Abspaltung von HNCO steht in bemerkenswertem Einklang damit, dass auch bei der Umsetzung von $Re(CO)_5CONH_2$ mit flüssigem NH₃ NH₄NCO bzw. bei höherer Temperatur $CO(NH_2)_2$ entsteht. Die Annahme, dass die $CONH_2$ -Gruppe in Analogie zum Hofmannschen Säureamidabbau leicht zu NCO⁻ oxidiert wird, lässt sich massenspektroskopisch durch die Bildung von $Re(CO)NCO^+$ aus dem Ion $Re(CO)CONH_2^+$ durch Abspaltung von 2 H stützen.

SCHEMA 1. FRAGMENTIERUNGSSCHEMA VON Re(CO)5 CONH2.

*Relative Intensität (in%) bezogen auf ¹⁸⁷Re = 100%

IR-Spektrum von $Re(CO)_5CONH_2$. Das Festkörper-KBr-Spektrum von $Re(CO)_5CONH_2$ zeigt im $\nu(CO)$ -Bereich mehr Absorptionen als erwartet, was sowohl durch Festkörpereffekte als auch durch Zersetzung des Komplexes erklärt werden kann (Tab. 2). Dagegen beobachtet man im CH_2Cl_2 -Lösungsspektrum im wesentlichen 3 $\nu(CO)$ -Banden ($C_{4\nu}$). Die zusätzliche Schulter bei 2070 cm⁻¹ ist wahrscheinlich auf eine geringe Symmetrieerniedrigung zurückzuführen. Dies steht in Übereinstimmung mit Untersuchungen von Pitcher und Stone [11] am $C_2F_5CORe(CO)_5$, das ebenfalls 4 $\nu(CO)$ -Valenzschwingungen aufweist (2142s, 2069s, 2037sst, 2013st).

Im Festkörperspektrum des $Re(CO)_5CONH_2$ werden die schwachen bis mittelstarken Absorptionen zwischen 1657 und 1545 cm⁻¹ den Schwingungen der $CONH_2$ -Gruppe zugeordnet. Das ¹H-NMR-Spektrum von $Re(CO)_5CONH_2$ in

	fest/KBr	Lsg./CH ₂ Cl ₂	Zuordnung
Re(CO)5CONH2	2150s 2090(Sch) 2047st 2017st 1998sst 1970st 1657s 1605s 1560s-m 1545s-m 1248s	2145s 2070s(Sch) 2025sst 2005m(Sch)	$\nu(CO)$ $2 A_1 + E$ $\nu(>C=O) +$ $\nu(>C=N\leq) +$ $\delta(NH_2)$ $\rho(NH_2)$

CHARAKTERISTISCHE ABSORPTIONEN VON ${\rm Re}({\rm CO})_5{\rm CONH}_2$ IM KURZWELLIGEN IR-BEREICH (cm $^{-1}$)

CDCl₃ bei -50° C zeigt ein breites Signal bei 6.5 ppm rel. ext. TMS (δ), das nach einer Linienanalyse zweifelsfrei den NH-Protonen zuzuordnen ist.

2. Umsetzung kationischer Pentacarbonyl-Komplexe des Mangans und Rheniums mit flüssigem NH_3

Die beiden Carbamoyl-ammin-tetracarbonyl-Komplexe cis-Mn(CO)₄(NH₃)-CONH₂ und cis-Re(CO)₄(NH₃)CONH₂ konnten schon früher aus Mn(CO)₅Cl bzw. Re(CO)₅Cl in flüssigem NH₃ erhalten werden [1,2]. Bei der Umsetzung der Kationkomplexe [Mn(CO)₅PPh₃]⁺ bzw. [Re(CO)₅PPh₃]⁺ mit flüssigem NH₃ (Reaktionszeit 10 bzw. 20 min) ist es möglich, auch die entsprechenden phosphinsubstitutierten, ebenfalls cis-konfigurierten Tetracarbonyl-Derivate darzustellen (Gl. 5). Während der hellgelbe Mangankomplex gemäss Gl. 6 sehr leicht

$$[M(CO)_{5}PPh_{3}]^{+} + 2 NH_{3} \xrightarrow{-70^{\circ}C} M(CO)_{4}(PPh_{3})CONH_{2} + NH_{4}^{+}$$
(5)
(M = Mn, Re)

$$Mn(CO)_4(PPh_3)CONH_2 + NH_3 \rightarrow HMn(CO)_4PPh_3 + NH_4NCO$$
(6)

dem Hofmannschen Säureamidabbau unterliegt, erweist sich die entsprechende farblose Rheniumverbindung als verhältnismässig stabil. Dagegen lässt sich bei der Einwirkung von flüssigem NH_3 auf $[Mn(CO)_5PEt_3]^+$ selbst bei $-70^{\circ}C$ die Bildung eines Carbamoylkomplexes nicht beobachten. Vielmehr erfolgt gemäss Gl. 7 quantitative Umsetzung zu $HMn(CO)_4PEt_3$ und NH_4NCO . Der auf diesem

$$[Mn(CO)_5PEt_3]^+ + 3 NH_3 \xrightarrow[flüss. NH_3]{-70^{\circ}C} HMn(CO)_4PEt_3 + NH_4NCO + NH_4^+$$
(7)

Weg erstmals dargestellte Hydridokomplex $HMn(CO)_4PEt_3$ stimmt in seinen Eigenschaften und IR-Spektren mit der von Theubert [12] aus Na[Mn(CO)_4-PEt_3] und verd. H₃PO₄ freigesetzten Verbindung weitgehend überein. Eine zusätzliche Charakterisierung erfolgt durch das ¹H-NMR-Spektrum, in dem neben den Multipletts der Methyl- und Methylenprotonen der Ethylgruppen (2.1 und 1.5 ppm rel. int. TMS) ein Dublett bei -7.65 ppm rel. int. TMS (δ)

TABELLE 2

(J(PH) 36 Hz) für den Hydridwasserstoff auftritt.

Die wesentlich grössere Beständigkeit der Carbamoyl-carbonyl-Komplexe des Rheniums gegenüber denjenigen des Mangans zeigt sich auch bei der Reaktion von [Re(CO)₅PEt₃]⁺ mit flüssigem NH₃, bei der sich bei -80° C die schwerlösliche Carbamoylverbindung *cis*-Re(CO)₄(PEt₃)CONH₂ isolieren lässt. Allerdings erfolgt bei -33° C auch hier wieder Bildung von HRe(CO)₄PEt₃ und NH₄NCO.

Massenspektren von cis-Re(CO)₄(PEt₃)CONH₂ und cis-M(CO)₄(NH₃)CONH₂ (M = Mn, Re). Während von den PPh₃-substituierten Carbamoyl-Komplexen cis-M(CO)₄(PPh₃)CONH₂ (M = Mn, Re) wegen der Zersetzung im Massenspektrometer keine Spektren erhalten werden konnten, wird beim Re(CO)₄(PEt₃)CONH₂ (Et = C₂H₅), ausgehend vom Molekülion, die vollständige Decarbonylierung beobachtet. Auf eine primäre Abspaltung der Amidgruppe und anschliessende CO-Eliminierung weisen insbesondere die Ionen Re(CO)_xPEt₃⁺ (x = 5-3) hin. Im übrigen treten bereits im oberen Massenbereich zahlreiche Fragmente auf, die auf Abbauprozesse des PEt₃-Liganden zurückzuführen sind. Dementsprechend führt die Abspaltung von C₂H₅, sowie der massengleichen C₂H₄- und CO-Gruppen, zu Überlagerungen der Fragmente, so dass eine zweifelsfreie Interpretation nicht möglich ist.

Da von Tetracarbonyl-carbamoyl-Komplexen des Mangans und Rheniums in der Literatur keine Massenspektren bekannt sind, soll im folgenden das Fragmentierungsverhalten, speziell von *cis*-Mn(CO)₄(NH₃)CONH₂ beschrieben werden (Schema 2).

SCHEMA 2. FRAGMENTIERUNGSSCHEMA VON cis-Mn(CO)4(NH3)CONH2.

*Relative Intensität (in %) bezogen auf Mn = 100 %

Wie zu erwarten, werden primär sämtliche CO-Liganden schrittweise eliminiert (Fragmentierungsweg A). Die Bruchstücke $Mn(CO)_x NH_3^+$ und $Mn(CO)_x^ NH_2^+$ (x = 5-0) sind dagegen auf die Abspaltung der NH₂- bzw. NH₃-Gruppe aus dem Molekülion und auf die sich daran anschliessende Decarbonylierung zurückzuführen (Fragmentierungswege C und F).

Im Gegensatz zum Re(CO)₅CONH₂ erfolgt bereits aus dem Molekülion Mn(CO)₄(NH₃)CONH₂⁺ Wasserstoffabspaltung zum Isocyanato-Ion Mn(CO)₄- $(NH_3)NCO^+$ was, unter Berücksichtigung nachfolgender CO-Eliminierungen, zu der Ionenreihe $Mn(CO)_x(NH_3)NCO^+$ (x = 4–1) führt (Fragmentierungsweg D). Geht dagegen der Wasserstoffabspaltung die primäre NH₃-Eliminierung zum Mn(CO)₄CONH₂⁺ voraus, so entstehen in der Folge die Fragmente Mn(CO)_xNCO (x = 4-0) (Fragmentierungsweg E), die sich natürlich auch durch NH₃-Abspaltung aus den jeweiligen Ionen $Mn(CO)_{r}(NH_{3})NCO^{+}$ (x = 4-0) bilden können. Das gegenüber dem Molekülion um eine CO-Gruppe ärmere Fragment Mn(CO)₄-(NH₃)NH₂⁺ unterliegt neben der vollständigen Decarbonylierung (Fragmentierun weg A) einer Wasserabspaltung aus der Carbamoylgruppe zum $Mn(CO)_3(NH_3)CN$ (Fragmentierungsweg B), was durch einen entsprechenden metastabilen Übergang ($m^* = 165.5$) gestützt werden kann. Im übrigen ist der Übergang des Säureamids in ein Nitril nicht auf die Vorgänge im Massenspektrometer beschränkt. Vielmehr erfolgt eine ähnliche Reaktion auch dann, wenn Mn(CO)₄(NH₃)- $(CONH_2)$ bei $-45^{\circ}C$ mit flüssigem NH₃ umgesetzt wird [2] (Gl. 8).

$$Mn(CO)_4(NH_3)CONH_2 + NH_3 \rightarrow Mn(CO)_3(NH_3)_2CN + CO + H_2O$$
(8)

Das Massenspektrum der Rheniumverbindung $\operatorname{Re}(\operatorname{CO})_4(\operatorname{NH}_3)\operatorname{CONH}_2$ ist bezüglich der auftretenden Fragmentreihen $\operatorname{Re}(\operatorname{CO})_x(\operatorname{NH}_3)\operatorname{NH}_2^+$, $\operatorname{Re}(\operatorname{CO})_x\operatorname{NH}_3^+$ und $\operatorname{Re}(\operatorname{CO})_x\operatorname{NH}_2^+$ (x = 5-0) identisch mit dem der analogen Manganverbindung. In wieweit allerdings CN- bzw. NCO-haltige Fragmente entstehen, kann nicht mit Sicherheit gesagt werden, da das Spektrum einerseits sehr intensitätsschwach registriert wird und zudem die zu erwartenden Peaks aufgrund der Isotopenverteilung des Re überlagert werden.

IR-Spektren. Mn(CO)₄(PPh₃)CONH₂, Re(CO)₄(PPh₃)CONH₂ und Re(CO)₄-(PEt₃)CONH₂ zeigen sowohl im Festkörper-KBr-Spektrum als auch im CH₂Cl₂-Lösungsspektrum im wesentlichen jeweils 4 ν (CO)-Absorptionen zwischen 2090 und 1935 cm⁻¹ (Tab. 3). Damit kann für die 3 genannten Verbindungen eine *cis*-Anordnung der PPh₃- bzw. PEt₃-Gruppe und des -CONH₂-Restes im Koordinationsoktaeder [C_{2v} -Symmetrie (2 $A_1 + B_1 + B_2$)] angenommen werden.

Die wesentlich grössere Empfindlichkeit des Mangankomplexes gegenüber den Rheniumverbindungen zeigt sich im Vergleich der Festkörper-KBr- und der Lösungsspektren. Während beim Re(CO)₄(L)CONH₂ (L = PPh₃, PEt₃) keine Anzeichen für eine beginnende Zersetzung zu beobachten sind, können beim Mn(CO)₄(PPh₃)CONH₂ Zersetzungserscheinungen, selbst bei Tieftemperaturmessungen bis -80°C, nicht ganz vermieden werden. So treten bei der Manganverbindung neben den in Tab. 3 angegebenen Banden noch weitere schwache Absorptionen bei 2230, 2030 und 1915 cm⁻¹ auf. Die erste ist einer ν (NCO)-Valenzschwingung zuzuordnen. Die charakteristischen Banden der CONH₂-, PPh₃- und PEt₃-Gruppen werden im Festkörperspektrum beobachtet, wobei aber lediglich diejenigen des CONH₂-Restes in Tab. 3 aufgenommen wurden.

3. Umsetzung kationischer Tetracarbonyl-Komplexe des Mangans und Rheniums mit flüssigem NH₃

Durch erheblich grössere Stabilität zeichnen sich die Carbamoyl-tricarbonyl-

CHARAKTERISTISCHE ABSORPTIONEN VON Mn(CO)₄(PPh₃)CONH₂, Re(CO)₄(PPh₃)CONH₂ UND Re(CO)₄(PEt₃)CONH₂ IM KURZWELLIGEN IR-BEREICH (cm⁻¹)

Verbindung	fest/KBr	$Lsg./CH_2Cl_2$	Zuordnung
Mn(CO) ₄ (PPh ₃)CONH ₂	(2230s)		Zers. v(NCO)
	207 5m	2098m	
	1999st	2002st	ν(CO)
	1963sst(br)	1972sst	∫
		1960(Sch) -	
	1605(Sch)		v(>c=0) +
	1580s-m J	1586m	$\nu(C=N=)+$
	1553m	1553m	$\delta(\mathrm{NH}_2)$
Re(CO) ₄ (PPh ₃)CONH ₂	2090s-m	2095s)
	ב 2000st 200	2005st	
	1975sst(br) -	1980sst	{
	1942st	1960st)
	1605s		$\nu(=c=0) +$
	1578s	1583m	$\nu(=C=N\leq)+$
	1583s-m(br)	1552m	$\delta(NH_2)$
Re(CO)4(PEt3)CONH2	2090st	2090m-st)
	1982sst(br)	2000sst	$\nu(CO)$
	1935sst	1978sst	
		1951st)
	1625s		`
	1600m		$\nu(=c=0) +$
	1582s	1580m	$\nu (= C = N <) +$
	1550m	1550m	$\delta(NH_2)$
	1515m		-

Komplexe $M(CO)_{3}L_{2}CONH_{2}$ (M = Mn; Re; L = PPh₃, PEt₃) und $M(CO)_{3}(D)$ -CONH₂ (M = Mn, Re; D = bipy, phen) aus, die man durch Umsetzung der kationischen Tetracarbonyl-Verbindungen $[M(CO)_{4}L_{2}]^{+}$ bzw. $[M(CO)_{4}D]^{+}$ bei deutlich erhöhten Reaktionstemperaturen (bei Mn bis $-33^{\circ}C$; bei Re bis 60°C) und längeren Versuchszeiten (bis zu 60 Minuten) darstellen kann. Infolge ihrer relativen Schwerlöslichkeit in flüssigem NH₃ lassen sich die erhaltenen Carbamoylkomplexe vom gleichzeitig entstandenen NH₄PF₆, das in flüssigem NH₃ bekanntlich als Ammonosäure fungiert, abtrennen. Eine quantitative Bildung der $-CONH_{2}$ -Derivate ist nämlich nur dann zu erwarten, wenn die NH₄⁴-Ionen aus dem Gleichgewicht entfernt werden.

Je mehr CO-Gruppen durch Phosphinliganden substituiert sind, umso beständiger ist das betreffende Carbamoylderivat. Deshalb nimmt die Stabilität in der Reihe $Re(CO)_5CONH_2$, $Re(CO)_4(PPh_3)CONH_2$, $Re(CO)_3(PPh_3)_2CONH_2$ merklich zu.

So sind von sämtlichen bisher beschriebenen Komplexen $Mn(CO)_3(PPh_3)_2$ -CONH₂ und Re(CO)₃(PPh₃)₂CONH₂ am beständigsten; sie lassen sich unter Schutzgasatmosphäre unterhalb 10°C monatelang unzersetzt aufbewahren. Wegen der Schwerlöslichkeit in allen gängigen Solvenzien und der geringen Verdampfbarkeit sind Molmassenbestimmungen und Aufnahmen von ¹H-NMRund Massenspektren nicht möglich.

Wesentlich unbeständiger sind die jeweiligen PEt₃-Derivate, Mn(CO)₃(PEt₃)₂-

 $CONH_2$ und $Re(CO)_3(PEt_3)_2CONH_2$. Sie lassen sich leicht verdampfen und sind in CH_2Cl_2 , $CHCl_3$ und Aceton recht gut löslich. Allerdings zersetzen sich solche Lösungen nach kurzer Zeit.

 $Mn(CO)_3(bipy)CONH_2, Mn(CO)_3(phen)CONH_2 und Re(CO)_3(bipy)CONH_2$ stehen bezüglich ihrer Stabilität, Löslichkeit und Flüchtigkeit zwischen den Komplexen $M(CO)_3(PPh_3)_2CONH_2$ und $M(CO)_3(PEt_3)_2CONH_2$ (M = Mn, Re). So erhält man im Massenspektrum des $Mn(CO)_3(phen)CONH_2$ mit sehr geringer Intensität zwar noch die Fragmente $Mn(CO)_2(phen)CONH_2^+$ und Mn(phen)- $CONH_2^+$, im wesentlichen tritt jedoch nur das Spektrum der beiden zweizähnigen N-Liganden auf.

Grundsätzlich lassen sich die Chloro-tricarbonyl- und die Carbamoyl-tricarbonyl-Komplexe $M(CO)_{3}L_{2}Cl$ und $M(CO)_{3}L_{2}CONH_{2}$ (L = einzähniger Ligand) miteinander vergleichen, da für beide Verbindungsreihen im Sinne von Fig. 1 die drei Isomeren *fac*, *mer-cis* und *mer-trans* zu diskutieren sind. Wie aus Tab. 4 hervorgeht, sind die CO-Gruppen im allgemeinen *facial* angeordnet. Von Interesse ist, dass sich lediglich Re(CO)_{3}(PPh_{3})_{2}Cl und Re(CO)_{3}(PPh_{3})_{2}CONH_{2} hinsichtlich ihrer geometrischen Isomerie unterscheiden.

Massenspektrum von $M(CO)_3(PEt_3)_2CONH_2$ (M = Mn, Re). Das Fragmentierungsverhalten von $Mn(CO)_3(PEt_3)_2CONH_2$ ist, ausgehend vom Molekülion, durch drei Primärprozesse gekennzeichnet (Schema 3). Während die durch NH_2 - bzw. HNCO-Abspaltung entstandenen Ionen $Mn(CO)_4(PEt_3)_2^+$ bzw. $Mn(CO)_3(PEt_3)_2H^+$ vollständig decarbonyliert werden, können beim weiteren Abbau von $Mn(PEt_3)_2CONH_2^+$, neben der CO-Eliminierung zum $Mn(PEt_3)_2NH_2^+$, drei weitere Fragmentierungsprozesse unterschieden werden. Hierbei ist die Abspaltung von Wasserstoff bzw. Wasser aus der Carbamoylgruppierung besonders charakteristisch.

Die entsprechende Rheniumverbindung $\text{Re}(\text{CO})_3(\text{PEt}_3)_2\text{CONH}_2$ kann aufgrund ihres Molekülions eindeutig identifiziert werden. Neben den primären Abspaltungen von CO bzw. NH₂ aus dem Molekülion werden, im Gegensatz zum Mn(CO)₃ (PEt₃)₂CONH₂, bereits bei hohen Massen Abbauprodukte des Phosphinliganden beobachtet, was wiederum dazu führt, dass Überlagerungen eine völlständige Interpretation des Massenspektrums unmöglich machen.

IR- und ¹H-NMR-Spektren von $M(CO)_{3}L_{2}CONH_{2}$ und $M(CO)_{3}(D)CONH_{2}$ ($M = Mn, Re; L = PPh_{3}, PEt_{3}; D = bipy, phen$). Sämtliche Carbamoyl-tricarbonylmangan- bzw. -rhenium-Verbindungen $M(CO)_{3}L_{2}CONH_{2}$ bzw. $M(CO)_{3}$ -

Fig. 1. Strukturmöglichkeiten für $M(CO)_{3}L_{2}X$ (L = einzähniger Ligand; X = Cl, CONH₂).

ANORDNUNG DER CO-LIGANDEN IN DEN OKTAEDRISCHEN KOMPLEXEN $M(CO)_3L_2Cl$, $M(CO)_3(D)Cl$, $M(CO)_3L_2CONH_2$ UND $M(CO)_3(D)CONH_2$ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen)

Chloro-Komplex	Carbamoyl-Komplex	
fac-Re(CO) ₃ (PPh ₃) ₂ Cl	mer-Re(CO) ₃ (PPh ₃) ₂ CONH ₂	
mer, cis-Mn(CO)3(PEt3)2Cl	mer-cis-Mn(CO) ₃ (PEt ₃) ₂ CONH ₂	
fac-Re(CO)3(PEt3)2Cl	fac-Re(CO) ₃ (PEt ₃) ₂ CONH ₂	
fac-Mn(CO) ₃ (bipy)Cl	fac-Mn(CO) ₃ (bipy)CONH ₂	
fac-Re(CO) (bipy)Cl	fac-Re(CO) ₃ (bipy)CONH ₂	
fac-Mn(CO) ₃ (phen)Cl	fac-Mn(CO) ₃ (phen)CONH ₂	

(D)CONH₂ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen) zeigen in ihren CH_2Cl_2 -Lösungsspektren jeweils 3 ν (CO)-Absorptionen (Tab. 5).

SCHEMA 3. FRAGMENTIERUNGSSCHEMA VON Mn(CO)₃(PEt₃)₂CONH₂.

* Relative Intensität (in %) bezogen auf $Mn(PEt_3)_2NH_2^+ = 100\%$

Koordinationspolyeder vom Typ $M(CO)_3L_2X$ (L = ein- oder zweizähniger Ligand, X = einzähniger Ligand) können bekanntlich in 3 bzw. 2 isomeren Formen vorliegen, die alle jeweils 3 IR-aktive $\nu(CO)$ -Valenzschwingungen zeigen sollten (Fig. 1). Nachdem sich *fac*- und *mer*-Form aufgrund ihrer Intensitätsmuster und den Frequenzabständen der 3 $\nu(CO)$ -Banden unterscheiden lassen [13,14] können den Carbamoyl-tricarbonyl-Komplexen die in Tab. 4 angegebenen Konfigurationen zugeordnet werden.

Die Aufnahme von ¹H-NMR-Spektren dieser Verbindungen gelingt wegen ihrer Zersetzlichkeit nur im Falle von $M(CO)_3(PEt_3)_2CONH_2$ (M = Mn, Re) bei -50°C in CDCl₃. Dabei beobachtet man infolge des ¹⁴N-Quadrupolmoments

CHARAKTERISTISCHE ABSORPTIONEN VON $M(CO)_3L_2CONH_2$ UND $M(CO)_3(D)CONH_2$ (M = Mn, Re; L = PPh₃, PEt₃; D = bipy, phen) IM KURZWELLIGEN IR-BEREICH (cm⁻¹)

Verbindung	fest/KBr	Lsg./CH2Cl2	Zuordnung
Re(CO) ₃ (PPh ₃) ₂ CONH ₂	2043m 2036(Sch) (2003ss) 1940sst 1913sst 1590s 1565m 1535m	20465-m (20055-m) 1942sst 1920m-st(Sch)	$Zers. \begin{cases} \nu(CO) \\ \nu(_C=O) + \\ \nu(_C=N=) + \\ \delta(NH_2) \end{cases}$
Mn(CO)3(PEt3)2CONH2	2008s 1985s-m 1916sst 1884sst 1842s(Sch) 1600m(br) 1572m* 1549s* 1505m-st 1245s	2018s 1993s-m 1930sst 1900st *Nujol	$\begin{cases} \nu(CO) \\ \nu(_C=O) + \\ \nu(_C=N_) + \\ \delta(NH_2) \\ \rho(NH_2) \end{cases}$
Re(CO)3(PEt3)2CONH2	2004st 1906sst 1870(Sch) 1604s-m 1581(Sch) 1540m 1540m 1505s	2018st 1928st 1912st	$ \begin{cases} \nu(CO) \\ \nu(_C=O) + \\ \nu(_C=N_) + \\ \delta(NH_2) \end{cases} $
Mn(CO) ₃ (bipy)CONH ₂	(2026(Sch)) 2007(Sch) 1995st 1915st 1885sst 1850(Sch) 1598m 1543m	(2031s) 2007sst 1917sst 1897sst	$ \left. \begin{array}{c} \text{Zers.} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Re(CO)3(bipy)CONH2	2008(Sch) } 1998st 1906st 1878st 1605s-m 1527m 1223s	2008sst (1960s) 1906sst 1891sst	$ \begin{cases} \nu(CO) \\ \nu(\subseteq C=O) + \\ \nu(\subseteq C=N\subseteq) + \delta(NH_2) \\ \rho(NH_2) \end{cases} $
Mn(CO)3(phen)CONH2	(2031(Sch)) 1999sst 1906sst 1886sst 1602s 1580s 1550m 1215s	(2032s) 2005sst (1970ss) (1938(Sch)) 1917sst 1895st	Zers. Zers. Zers. $\nu(CO)$ $\nu(\subset C=0) + + + + + + + + + + + + + + + + + + +$

jeweils in erster Näherung für die NH-Protonen ein sehr breites Signal bei ca. 5.7 ppm rel. ext. TMS (δ) und zwei Multipletts bei 1.8 (2H) bzw. 1.1 (3H) ppm für die Protonen der Ethylgruppen. Durch Wechselwirkung mit dem Kernspin des ³¹P sind die Signale darüber hinaus noch weiter aufgespalten.

II. Reaktionen der neuen Carbamoyl-carbonyl-Komplexe des Mangans und Rheniums

1. Reaktionen mit flüssigem NH₃

Bei der Reaktion von Carbamoyl-carbonyl-Komplexen mit flüssigem NH₃ kann man neben der Bildung von NH₄NCO und Hydrido-carbonyl-Verbindungen in einigen Fällen noch einen dritten Reaktionsweg, nämlich Abspaltung von

 H_2O aus der -C O -Gruppierung beobachten [2]. Von den hierbei entstehen-N H_2 -Gruppierung beobachten [2]. Von den hierbei entstehen-

den Cyanokomplexen kann nach neuen Untersuchungen nur das Cyano-diammin-tricarbonyl-rhenium(+I) Re(CO)₃(NH₃)₂CN [15], als gesichert angesehen werden (Gl. 9).

$$\operatorname{Re}(\operatorname{CO})_{4}(\operatorname{NH}_{3})\operatorname{CONH}_{2} + \operatorname{NH}_{3} \rightarrow \operatorname{Re}(\operatorname{CO})_{3}(\operatorname{NH}_{3})_{2}\operatorname{CN} + \operatorname{H}_{2}\operatorname{O} + \operatorname{CO}$$
(9)

In diesem Zusammenhang wird nochmals auf die Massenspektren von $M(CO)_4$ -(NH₃)CONH₂ (M = Mn, Re) verwiesen, in denen Fragmente mit der CN-Gruppe auftreiten (siehe Schema 2).

2. Umsetzung mit HCl

Wie alle bisher bekannten Carbamoylverbindungen [1,2,16–19] setzen sich auch die in dieser Arbeit beschriebenen Komplexe ohne Ausnahme mit gasförmigem HCl unter Rückbildung der betreffenden kationischen Ausgangsverbindungen um (Gl. 10).

$$M(CO)_4(PPh_3)CONH_2 + 2 HCl \rightarrow [M(CO)_5PPh_3]Cl + NH_4Cl$$
(10)

(M = Mn, Re)

Diese Reaktionen gleichen den entsprechenden Umsetzungen von Carboalkoxo-Komplexen mit HCl [20], bei denen ebenfalls die kationischen Ausgangsverbindungen zurückgewonnen werden.

Im allgemeinen laufen diese Reaktionen in benzolischer Suspension bereits bei Raumtemperatur in wenigen Minuten quantitativ ab. Lediglich bei den extrem empfindlichen Komplexen $\text{Re}(\text{CO})_5\text{CONH}_2$ und $\text{Mn}(\text{CO})_4(\text{PPh}_3)\text{CONH}_2$ empfiehlt es sich, die Umsetzungen zur Vermeidung vorzeitiger Zersetzung bei -50° C in ätherischer Suspension vorzunehmen.

3. Umsetzung mit CH_3OH

Nachdem Angelici [10] Carbamoyl-carbonyl-Komplexe mit der CONHR-Gruppe, reversibel in die entsprechenden Carboalkoxoderivate überführen konnte, wurden solche Veresterungen nun auch mit den CONH₂-Komplexen

$M(CO)_3(PPh_3)_2CONH_2$ (M = Mn, Re) durchgeführt (Gl. 11), wobei katalytische

 $M(CO)_{3}(PPh_{3})_{2}CONH_{2} + CH_{3}OH \xrightarrow{NaOCH_{3}} M(CO)_{3}(PPh_{3})_{2}COOCH_{3} + NH_{3}$ (11) (M = Mn, Re)

Mengen von NaOCH₃ die Umsetzung beschleunigen. Die so erhaltenen Carboalkoxokomplexe sind mit den von Kruck und Noack [20] aus $[M(CO)_4$ - $(PPh_3)_2]^+$ (M = Mn, Re) und CH₃OH dargestellten Estern identisch. Die Umwandlung des Esters in den Carbamoylkomplex, wie sie Angelici [10] mit Aminen gelang, konnte mit NH₃ selbst bei 120°C in flüssigem NH₃ nicht beobachtet werden, was auf die im Vergleich zu Aminen schwächere Basizität des NH₃ zurückzuführen ist.

Experimentelles

Wegen der Durchführung der Versuche wird auf die früher beschriebene Experimentiertechnik in flüssigem NH_3 verwiesen [21]. Die Massen-, IR- und NMR-Spektren wurden mit den folgenden Geräten aufgenommen: Varian CH 5 (Direkteinlass, 70 eV); Beckman IR 7; Jeol JNM-C-60HL bzw. Jeol JNMPS 100 PFT.

(1) Darstellung der kationischen Ausgangsverbindungen

Die Verbindungen $[Mn(CO)_6]FeCl_4$ [7], $[Re(CO)_6]Cl \cdot HCl$ [7], $[Mn(CO)_5-PPh_3]AlCl_4$ [22], $[Mn(CO)_4(PPh_3)_2]AlCl_4$ [22], $[Re(CO)_4(PPh_3)_2]AlCl_4$ [22] und $[Mn(CO)_4phen]_2Zn_2Cl_6$ [22] werden nach den in der Literatur beschriebenen Methoden dargestellt. Zur Bildung der beständigeren, schwerlöslichen PF_6-Salze werden diese aus Methanol mit wässriger NH_4PF_6-Lösung gefällt, mit H_2O nachgewaschen und aus Aceton/Äther umkristallisiert.

Nach dem gleichen Verfahren werden auch die noch nicht bekannten Kationkomplexe [Re(CO)₅PPh₃]AlCl₄, [Mn(CO)₅PEt₃]AlCl₄, [Re(CO)₅PEt₃]FeCl₄, [Re(CO)₄(PEt₃)₂]AlCl₄, [Mn(CO)₄bipy]₂Zn₂Cl₆ und [Re(CO)₄bipy]₂Zn₂Cl₆ im Glaseinsatz eines Rotationsautoklaven aus den entsprechenden kovalenten, um eine CO-Gruppe ärmeren, substituierten Chlorocarbonylverbindungen und einem Halogenacceptor, wie AlCl₃, FeCl₃ oder ZnCl₂ bei 300—350 bar CO-Druck dargestellt, wobei im Falle des [M(CO)₅PEt₃]^{*} (M = Mn, Re) ein Zusatz von 5 ml Benzol erforderlich ist.

 $[Mn(CO)_4(PEt_3)_2]AlCl_5$ kann aus $Mn(CO)_3(PEt_3)_2Cl$ und $AlCl_3$ im Schlenkrohr erhalten werden, wenn man in die benzolische Lösung bei Raumtemperatur trockenes CO-Gas einleitet. Analysenergebnisse und Ausbeuten der neuen kationischen Komplexe sind in Tab. 6 zusammengefasst.

Die für die Synthese von $[M(CO)_4(PEt_3)_2]^+$ (M = Mn, Re) benötigten, in der Literatur noch nicht beschriebenen Ausgangsverbindungen $M(CO)_3(PEt_3)_2Cl$ erhält man durch Umsetzung von 10 mmol $M(CO)_5Cl$ in 60 ml Äthanol mit 21 mmol frisch destilliertem PEt₃ bei 60°C (Mn) bzw. 80°C (Re). Nach 2 Stdn. wird das Lösungsmittel abgezogen, der ölige Kristallbrei mit wenig kaltem Äther und Petroläther gewaschen und aus CHCl₃/Petroläther bei -20°C umgefällt.

(2) Darstellung der Carbamoyl-carbonyl-Komplexe

Die für die Darstellung der beschriebenen Carbamoyl-carbonyl-Verbindungen

Verbindungen	Analysen (gef. (ber.) (%))			Aus-
	с	н	M ^a	N	Р	beuten (%)
[Re(CO) ₅ PPh ₃]PF ₆	37.38	2.03	24.94		8.27	65
	(37.66)	(2.04)	(25.40)		(8.45)	
[Mn(CO) ₅ PEt ₃]PF ₆	29.27	3.24	11.83		13.25	70
	(28.88)	(3.21)	(12.01)		(13.55)	
[Re(CO) ₅ PEt ₃]PF ₆	22.11	2,48	31.91			50
	(22.40)	(2.54)	(31.55)		(15.19)	
[Mn(CO)4(PEt ₃)2]PF ₆	34.47	5.22	10.23		16.59	90
	(35.07)	(5.48)	(10.03)		(16.99)	
[Re(CO) ₄ (PEt ₃) ₂]PF ₆	28.35	4.16	27.70		13.65	70
	(28.29)	(4.42)	(27.44)		(13.70)	
[Mn(CO)4bipy]PF ₆	35.30	1.73	11.94	5.99	6.59	50
	(35,96)	(1.71)	(11.75)	(5.98)	(6.63)	
[Re(CO)4bipy]PF ₆	29.19	1.34	31.26	4.63	5.02	50
-	(28.18)	(1.34)	(31.09)	(4.69)	(5.17)	

ANALYSEN UND AUSBEUTEN NEUER KATIONISCHER KOMPLEXE DES Mn UND Re (PPh3	=
$P(C_6H_5)_3$; PEt ₃ = $P(C_2H_5)_3$; bipy = $C_{10}H_8N_2$)	

a M = Mn, Re.

des Mn und Re gewählten Einwaagen und Reaktionsbedingungen sind aus Tab. 7 ersichtlich. Unterhalb -33° C arbeitet man in einer Tauchfritte, oberhalb -33° C in dickwandigen Einschlussrohren. Zur Vermeidung von Zersetzungen dürfen die angegebenen Versuchstemperaturen, auch während des Nachwaschens mit flüssigem NH₃, keinesfalls überschritten werden. Analysen, rel. Molmassen, Ausbeuten und Farben sind Tab. 8 zu entnehmen.

TABELLE 7

EINWAAGEN UND VERSUCHSBEDINGUNGEN FÜR DIE DARSTELLUNG DER CARBAMOYL-CARBONYL-KOMPLEXE DES MANGANS UND RHENIUMS (IN JEWEILS 20 ml FLÜSS. NH₃)

Darstellung von	Einwaagen	Reaktions- bedingungen Temp. (°C)/ Zeit (min)
Re(CO) ₅ CONH ₂	1.495 g (3.51 mmol) [Re(CO) ₆]Cl · HCl	-80/10
Mn(CO) ₄ (PPh ₃)CONH ₂	1.230 g (2.04 mmol) [Mn(CO) ₅ PPh ₃]PF ₆	-70/10
Re(CO) ₄ (PPh ₃)CONH ₂	1.275 g (1.74 mmol) [Re(CO) ₅ PPh ₃]PF ₆	-70/20
Re(CO) ₄ (PEt ₃)CONH ₂	0.335 g (0.49 mmol) [Re(CO)5PEt3]PF6	60/20
Mn(CO) ₃ (PPh ₃) ₂ CONH ₂	1.545 g (1.85 mmol) [Mn(CO) ₄ (PPh ₃) ₂]PF ₆	-33/20
Re(CO) ₃ (PPh ₃) ₂ CONH ₂	$1.530 \text{ g} (1.58 \text{ mmol}) [\text{Re}(\text{CO})_4(\text{PPh}_3)_2]\text{PF}_6$	50/60
Mn(CO) ₃ (PEt ₃) ₂ CONH ₂	$1.380 \text{ g} (2.52 \text{ mmol}) [Mn(CO)_4(PEt_3)_2]PF_6$	-33/40
Re(CO) ₃ (PEt ₃) ₂ CONH ₂	1.225 g (1.81 mmol) [Re(CO) ₄ (PEt ₃) ₂]PF ₆	60/60
Mn(CO) ₃ (bipy)CONH ₂	1.245 g (2.66 mmol) [Mn(CO)4bipy]PF6	-50/30
Re(CO) ₃ (bipy)CONH ₂	1.430 g (2.39 mmol) [Re(CO)4bipy]PF6	20/60
$Mn(CO)_3(phen)CONH_2$	1.170 g (2.38 mmol) [Mn(CO) ₄ phen]PF ₆	50/30

bipy = $C_{10}H_{B}N_{2}$; phen = $C_{12}H_{B}$	I ₈ N2)							
Verbindungen	Analysen gef	f. (ber.) (%)				Rel.	Aus-	Farbe
	U	Н	w a	z	đ	mounnasse gef. (ber.)	0%)	
Re(CO)5CONH2	18.74	0,32	50,54	2.89			30	farblos
Mn(CO)4(PPh ₃)CONH ₂	(19.44) 57.31	(0.54) 3.22	(50.28) 11.42	(3.78) 2.65	6,28	(370,31)	40	hellgelb
	(58.36)	(3.59)	(11.60)	(2,95)	(6,54)	(473.32)	1	
Re(CO)4(PPh3)CONH2	45.85 (45.69)	2.88 (2.81)	31.02 (30.80)	1.91 (2.31)	5.45 (5,13)	(606,60)	55	farblos
Mn(CO) ₃ (PPh ₃) ₂ CONH ₂	68,19	4.77	7.90	1,95	8,97		90	hellgelb
	(61,89)	(4.53)	(1.77)	(1,98)	(8,76)	(101,60)		
Re(CO) ₃ (PPh ₃) ₂ CONH ₂	57.98	3.82	22.43	1.53	7,69		90	farblos
	(57,31)	(3.81)	(22.19)	(1.66)	(1.39)	(838,88)		
Mn(CO) ₃ (PEt ₃) ₂ CONH ₂	45.52	7.73	12.89	3.02	15,01	445	70	hellgelb
	(45.82)	(1.63)	(13.11)	(3.34)	(14.79)	(419.32)		
Re(CO) ₃ (PEt ₃) ₂ CONH ₂	34.71	5.87	34,05	2.63	11,31	578	70	farblos
1	(34.89)	(2.81)	(33.82)	(2.54)	(11.25)	(550,60)		
Mn(CO) ₃ (bipy)CONH ₂	48.37	3.03	16.01	12.55			70	orangerot
1	(49.57)	(2.97)	(16,19)	(12.39)		(339,19)		
Re(CO) ₃ (bipy)CONH ₂	35.61	2,10	39.71	8.68			80	orange
	(35.73)	(2.12)	(39.58)	(8,92)		(470.47)		
Mn(CO) ₃ (phen)CONH ₂	53.19	3.09	15.66	12.67			60	orangerot
	(52.90)	(2.75)	(15.12)	(11.61)		(363,21)		

ANALYSEN, RELATIVE MOLMASSEN, AUSBEUTEN UND FARBEN DER CARBAMOYL-CARBONYL-KOMPLEXE (PPh₃ = P(C₆H₅)₃; PEt₃ = P(C₂H₅)₃; TABELLE 8

^aM = Mn, Re,

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie e.V., Fonds der Chemischen Industrie, für die Unterstützung dieser Untersuchungen.

Literatur

- 1 H. Behrens, E. Lindner und P. Pässler, Z. Anorg. Allg. Chem., 365 (1969) 137.
- 2 H. Behrens, E. Lindner, D. Maertens, P. Wild und R.J. Lampe, J. Organometal. Chem., 34 (1972) 367.
- 3 H. Krohberger, H. Behrens und J. Ellermann, J. Organometal. Chem., 46 (1972) 139.
- 4 J. Ellermann, H. Behrens und H. Krohberger, J. Organometal. Chem., 46 (1972) 116.
- 5 A. Pfister, H. Behrens und M. Moll, Z. Anorg. Allg. Chem., 428 (1977) 53.
- 6 H. Behrens und E. Ruyter, Z. Anorg. Allg. Chem., 349 (1967) 258.
- 7 Th. Kruck und M. Noack, Chem. Ber., 96 (1963) 3028.
- 8 Th. Kruck und M. Höfler, Chem. Ber., 96 (1963) 3035.
- 9 H. Behrens, E. Ruyter und H. Wakamatsu, Z. Anorg. Allg. Chem., 349 (1967) 241.
- 10 R.W. Brink und R.J. Angelici, Inorg. Chem., 12 (1973) 1062.
- 11 E. Pitcher und F.G.A. Stone, Spectrochim. Acta, 18 (1962) 585.
- 12 F. Theubert, Dissertation T.H. München, 1961.
- 13 L.E. Orgel, Inorg. Chem., 1 (1962) 25.
- 14 F.A. Cotton, Inorg. Chem., 3 (1964) 702.
- 15 H. Behrens, E. Lindner und P. Pässler, Z. Anorg. Allg. Chem., 361 (1968) 125.
- 16 D.M. Chipman und R.A. Jacobson, Inorg. Chim. Acta, 1 (1967) 393.
- 17 R.J. Angelici und D.L. Denton, Inorg. Chim. Acta, 2 (1968) 3.
- 18 R.J. Angelici und A.E. Kruse, J. Organometal. Chem., 22 (1970) 461.
- 19 L. Busetto und R.J. Angelici, Inorg. Chim. Acta, 2 (1968) 391.
- 20 Th. Kruck und M. Noack, Chem. Ber., 97 (1964) 1693.
- 21 H. Behrens und J. Vogel, Chem. Ber., 96 (1963) 2220.
- 22 R.J. Angelici und L.J. Blacik, Inorg. Chem., 11 (1972) 1754.
- 23 H. Behrens, A. Pfister, M. Moll und E. Sepp, Z. Anorg. Allg. Chem., 428 (1977) 61.